
Privacy-Preserving
Computation in PlatON
Version 1.0
LatticeX Foundation /

Let Us Compute—PlatON

www.platon.network

July 15, 2021

Let Us Compute—PlatON / 01

www.platon.network

Privacy-preserving computation is the key component and ability of PlatON and Alaya

networks, which are open-source projects under LatticeX Foundation. LatticeX Foun-

dation aims to solve three main problems in the blockchain community, including priva-

cy, storage and key management. This article describes the underlying cryptographic

components and potential capabilities to support privacy-preserving applications in

these two networks.

Abstract

Let Us Compute—PlatON / 02

Contents

 1 Overall Framework

 2 Algorithms
2.1. Primitives

2.2. ZK-SNARKs

2.3. Recursive ZKPs

2.4. Accumulators

 3 On-Chain Capabilities
3.1. Privacy

3.1.1. Payment

3.1.2. Computation

3.2. Storage

 4 Off-Chain Services
4.1. Computation Service

4.2. Storage Service

 5 Applications
5.1. Fair Exchange

5.2. Anonymous DAO

5.3. Private Decentralized Exchange

5.4. Sealed Bidding

5.5. Private NFT

5.6. ZK-Game

 6 LATs in PlatON
6.1. Threshold Signature

6.2. Framework and Architecture

 7 Roadmap

03

06
06

07

08

10

11
11

13

14
14

15

16
16

16

17

18

18

19

20
22

23

27

www.platon.network

Let Us Compute—PlatON / 03

Blockchain community has grown very rapidly these years, and plenty of applications
arere-built in decentralized systems. However, many urgent problems still exist and shall
be solved in blockchain systems. This article aims to consider privacy, storage and key
management, which are widely discussed in the community.

Dating back to the design of Bitcoin, all participants maintain the network by storing
copies of all the data. Although it provides a potential method to achieve “consensus”, the
transaction data is public to all the participants. Ethereum introduces smart contract that
extends payment transactions into any computable functions. Developers could design
their business logic using smart contract, once the condition is satisfied, the smart
contract will be run automatically. Automatic execution essentially means that each node
of the network executes the smart contract repeatedly in local. Therefore, the input,
output and description of the function should be public to all participants.

Developers now realize privacy is becoming one of the most important issues when building
financial business among enterprises with blockchains. The privacy of the transfer amount,
the anonymity of payer and payee, and the privacy of the business logic (i.e., the function
described in smart contract) should be protected in most scenarios. LatticeX Foundation
aims to provide a privacy-preserving infrastructure for decentralized business among finan-
cial institutes.

As the name of blockchain, each block containing multiple transactions is chained to
another with a cryptographic hash function. The one-wayness of the hash function and
append-only structure of blockchain make it computationally hard to tamper data stored.
However, as transactions continue to grow, so does the amount of data that needs to be
stored on the blockchain. At the time of writing this manuscript, Bitcoin and Ethereum
store hundreds of gigabyte amount of data, and the size is still increasing. It takes days
on a typical laptop as a full node to synchronize and verify these historical transactions.
The underlying consensus protocol of PlatON/Alaya is based on proof of stake (PoS). In
a PoS system, the validators often run full nodes in a cloud provided by a third party, and
almost over 50% cost of cloud services comes from storage. With the increasing of block-
chain data, the cost of validator arises. Therefore, reducing the size of storage is import-
ant for validators to reduce cost and further maintain the security of the network.

LatticeX Foundation proposes a framework, as shown in Figure , to deal with

privacy and storage issues in PlatON/Alaya. This solution or plan is based on the

architecture of PlatON 2.0 (see the white paper). The vision of PlatON 2.0 is to

1 / Overall Framework build a decentralized and collaborative AI network and global brain to drive the

democratization of artificial general intelligence.

A three-layer network is considered in PlatON 2.0. The first layer is Consensus

Layer. Consensus network is a decentralized network composed of blockchain

nodes, which are connected to each other through P2P protocols and can be con-

sensual through consensus protocols in an environment where no one needs to be

trusted. On the blockchain network, smart contracts can be executed automatically.

The second layer is Privacy-Preserving Computation Network. Data nodes and

computing nodes could connect to this layer and publish data and contribute com-

puting power. Through smart contracts on the blockchain, a decentralized sharing

and trading marketplace for data, algorithms and computing power can be built.

Based on the cryptographic economics it will form an effective incentive mechanism

to motivate more data, algorithms and computing power to join the network. The

third layer is Collaborative AI Network, in which multi-agent systems and AI agents

can operate independently, and finally form autonomous AI networks.

One could take the solution of this article as advanced properties of PlatON 2.0 in layer
1 and layer 2. It is designed dedicatedly to solve privacy and storage problems men-
tioned above.

www.platon.network

[28]

Four levels are considered in this framework. The first level contains necessary cryp-
tographic algorithms, especially related to zero-knowledge proofs. The second level is
built on layer 1 in PlatON 2.0, it focuses on providing on-chain capabilities to solve the
two problems above. The introduction of cryptographic tools will reduce the entire perfor-
mance inevitably, for which the raw transactions need to be stored in some place anyway,
instead of on the blockchain. The third level, which is built on layer 2, aims to provide
computation and storage services off the chain, and thus we call it off-chain services. The
fourth layer is built for privacy-preserving applications. Standard APIs, templates and
protocols are created for different applications. More details of each level will be
described in the coming sections.

In addition, one common requirement for all applications is to manage the private key
securely. This article also provides a relatively independent solution for key management
service in Section.

1

Blockchain community has grown very rapidly these years, and plenty of applications
arere-built in decentralized systems. However, many urgent problems still exist and shall
be solved in blockchain systems. This article aims to consider privacy, storage and key
management, which are widely discussed in the community.

Dating back to the design of Bitcoin, all participants maintain the network by storing
copies of all the data. Although it provides a potential method to achieve “consensus”, the
transaction data is public to all the participants. Ethereum introduces smart contract that
extends payment transactions into any computable functions. Developers could design
their business logic using smart contract, once the condition is satisfied, the smart
contract will be run automatically. Automatic execution essentially means that each node
of the network executes the smart contract repeatedly in local. Therefore, the input,
output and description of the function should be public to all participants.

Developers now realize privacy is becoming one of the most important issues when building
financial business among enterprises with blockchains. The privacy of the transfer amount,
the anonymity of payer and payee, and the privacy of the business logic (i.e., the function
described in smart contract) should be protected in most scenarios. LatticeX Foundation
aims to provide a privacy-preserving infrastructure for decentralized business among finan-
cial institutes.

As the name of blockchain, each block containing multiple transactions is chained to
another with a cryptographic hash function. The one-wayness of the hash function and
append-only structure of blockchain make it computationally hard to tamper data stored.
However, as transactions continue to grow, so does the amount of data that needs to be
stored on the blockchain. At the time of writing this manuscript, Bitcoin and Ethereum
store hundreds of gigabyte amount of data, and the size is still increasing. It takes days
on a typical laptop as a full node to synchronize and verify these historical transactions.
The underlying consensus protocol of PlatON/Alaya is based on proof of stake (PoS). In
a PoS system, the validators often run full nodes in a cloud provided by a third party, and
almost over 50% cost of cloud services comes from storage. With the increasing of block-
chain data, the cost of validator arises. Therefore, reducing the size of storage is import-
ant for validators to reduce cost and further maintain the security of the network.

LatticeX Foundation proposes a framework, as shown in Figure , to deal with

privacy and storage issues in PlatON/Alaya. This solution or plan is based on the

architecture of PlatON 2.0 (see the white paper). The vision of PlatON 2.0 is to

build a decentralized and collaborative AI network and global brain to drive the

democratization of artificial general intelligence.

A three-layer network is considered in PlatON 2.0. The first layer is Consensus

Layer. Consensus network is a decentralized network composed of blockchain

nodes, which are connected to each other through P2P protocols and can be con-

sensual through consensus protocols in an environment where no one needs to be

trusted. On the blockchain network, smart contracts can be executed automatically.

The second layer is Privacy-Preserving Computation Network. Data nodes and

computing nodes could connect to this layer and publish data and contribute com-

puting power. Through smart contracts on the blockchain, a decentralized sharing

and trading marketplace for data, algorithms and computing power can be built.

Based on the cryptographic economics it will form an effective incentive mechanism

to motivate more data, algorithms and computing power to join the network. The

third layer is Collaborative AI Network, in which multi-agent systems and AI agents

can operate independently, and finally form autonomous AI networks.

One could take the solution of this article as advanced properties of PlatON 2.0 in layer
1 and layer 2. It is designed dedicatedly to solve privacy and storage problems men-
tioned above.

Let Us Compute—PlatON / 04

www.platon.network

Four levels are considered in this framework. The first level contains necessary cryp-
tographic algorithms, especially related to zero-knowledge proofs. The second level is
built on layer 1 in PlatON 2.0, it focuses on providing on-chain capabilities to solve the
two problems above. The introduction of cryptographic tools will reduce the entire perfor-
mance inevitably, for which the raw transactions need to be stored in some place anyway,
instead of on the blockchain. The third level, which is built on layer 2, aims to provide
computation and storage services off the chain, and thus we call it off-chain services. The
fourth layer is built for privacy-preserving applications. Standard APIs, templates and
protocols are created for different applications. More details of each level will be
described in the coming sections.

In addition, one common requirement for all applications is to manage the private key
securely. This article also provides a relatively independent solution for key management
service in Section.

Figure 1: The Overall Framework of Privacy-Preserving Computation.

Fair
Exchange

Anonymous
DAO

Private
NFT

Private
DEX

Private
Lending

Sealed
Bidding ZK-Game

Applications

Data
Availability

Proof of
Storage

Authorized
Access

Private
ZK-Rollup

ETH-PlatON
Node

Secure
Outsourcing

Computation Service

Confidential Transaction

Anonymous Transaction

Private Transaction

Compiler/ZKVM

Input & Output Privacy

Function Privacy
Stateless Chain

Privacy Storage

Payment Computation Statelessness

Storage Service

Elliptic curves

Poseidon/Rescue Hash

Polynomial Commitment

Plonk/Marlin

GKR-Based Protocol

Gadgets Library

ZKP composition

IVC

Proof-Carrying Data

Vector Commitment/Pointproof

Merkle Tree

Verkle Tree

Algonrithms

Stateless Client

Primitives ZK-SNARKs Recursive ZKPs Accumulators

Blockchain community has grown very rapidly these years, and plenty of applications
arere-built in decentralized systems. However, many urgent problems still exist and shall
be solved in blockchain systems. This article aims to consider privacy, storage and key
management, which are widely discussed in the community.

Dating back to the design of Bitcoin, all participants maintain the network by storing
copies of all the data. Although it provides a potential method to achieve “consensus”, the
transaction data is public to all the participants. Ethereum introduces smart contract that
extends payment transactions into any computable functions. Developers could design
their business logic using smart contract, once the condition is satisfied, the smart
contract will be run automatically. Automatic execution essentially means that each node
of the network executes the smart contract repeatedly in local. Therefore, the input,
output and description of the function should be public to all participants.

Developers now realize privacy is becoming one of the most important issues when building
financial business among enterprises with blockchains. The privacy of the transfer amount,
the anonymity of payer and payee, and the privacy of the business logic (i.e., the function
described in smart contract) should be protected in most scenarios. LatticeX Foundation
aims to provide a privacy-preserving infrastructure for decentralized business among finan-
cial institutes.

As the name of blockchain, each block containing multiple transactions is chained to
another with a cryptographic hash function. The one-wayness of the hash function and
append-only structure of blockchain make it computationally hard to tamper data stored.
However, as transactions continue to grow, so does the amount of data that needs to be
stored on the blockchain. At the time of writing this manuscript, Bitcoin and Ethereum
store hundreds of gigabyte amount of data, and the size is still increasing. It takes days
on a typical laptop as a full node to synchronize and verify these historical transactions.
The underlying consensus protocol of PlatON/Alaya is based on proof of stake (PoS). In
a PoS system, the validators often run full nodes in a cloud provided by a third party, and
almost over 50% cost of cloud services comes from storage. With the increasing of block-
chain data, the cost of validator arises. Therefore, reducing the size of storage is import-
ant for validators to reduce cost and further maintain the security of the network.

LatticeX Foundation proposes a framework, as shown in Figure , to deal with

privacy and storage issues in PlatON/Alaya. This solution or plan is based on the

architecture of PlatON 2.0 (see the white paper). The vision of PlatON 2.0 is to

build a decentralized and collaborative AI network and global brain to drive the

democratization of artificial general intelligence.

A three-layer network is considered in PlatON 2.0. The first layer is Consensus

Layer. Consensus network is a decentralized network composed of blockchain

nodes, which are connected to each other through P2P protocols and can be con-

sensual through consensus protocols in an environment where no one needs to be

trusted. On the blockchain network, smart contracts can be executed automatically.

The second layer is Privacy-Preserving Computation Network. Data nodes and

computing nodes could connect to this layer and publish data and contribute com-

puting power. Through smart contracts on the blockchain, a decentralized sharing

and trading marketplace for data, algorithms and computing power can be built.

Based on the cryptographic economics it will form an effective incentive mechanism

to motivate more data, algorithms and computing power to join the network. The

third layer is Collaborative AI Network, in which multi-agent systems and AI agents

can operate independently, and finally form autonomous AI networks.

One could take the solution of this article as advanced properties of PlatON 2.0 in layer
1 and layer 2. It is designed dedicatedly to solve privacy and storage problems men-
tioned above.

www.platon.network

Four levels are considered in this framework. The first level contains necessary cryp-
tographic algorithms, especially related to zero-knowledge proofs. The second level is
built on layer 1 in PlatON 2.0, it focuses on providing on-chain capabilities to solve the
two problems above. The introduction of cryptographic tools will reduce the entire perfor-
mance inevitably, for which the raw transactions need to be stored in some place anyway,
instead of on the blockchain. The third level, which is built on layer 2, aims to provide
computation and storage services off the chain, and thus we call it off-chain services. The
fourth layer is built for privacy-preserving applications. Standard APIs, templates and
protocols are created for different applications. More details of each level will be
described in the coming sections.

In addition, one common requirement for all applications is to manage the private key
securely. This article also provides a relatively independent solution for key management
service in Section.6

Let Us Compute—PlatON / 05

Someone may call it BN2561

Let Us Compute—PlatON / 06

2 / Algorithms

www.platon.network

This level contains cryptographic algorithms to support upper level solutions. It have four
classes including primitives, ZK-SNARKs, recursive zero-knowledge proofs and accumu-
lators. Note that most of these algorithms are based on elliptic-curve cryptography, which
turns out to be nonquantum safe. Although we believe that the power of quantum computers
now poses no substantial threat to cryptography in a decade, we continue to maintain an
ongoing interest in post-quantum cryptography. The research of quantum-resilient alter-
natives is very active in the academic community, we will migrate to the post-quantum era
gradually when these algorithms are ready.

2.1. Primitives

Primitives are building blocks to construct advanced cryptographic algorithms and
solutions.

Elliptic Curves. Elliptic-curve cryptography enables smaller public key size and fast opera-
tions. Inheriting from Ethereum the Secp256k1 curve is supported natively. Faster
Curve25519 is also integrated to generate fast zero-knowledge proof, e.g., range proofs,
based on discrete log problems. Another type of curves are pairing-friendly ones, including
BN254 and BLS12-381. These two curves are widely used in ZK-SNARKs algorithm and
related pairing-based constructions such as BLS signature and verifiable function. Due to its
versatility, pairing-friendly curves will be unified with BLS12-381 in the near future.

Hash Functions. Standard hash function used in blockchain is SHA256. Although the
computation of SHA256 is extremely fast, it is not compatible with zero-knowledge proof
algorithms.This is because SHA256 consists of well-designed Boolean circuits, but almost
zero-knowledge proof algorithms are designed for arithmetic circuits. In theory, one could
transfer SHA256 circuit into arithmetic in a field, but the performance of proof generation of
the underlying ZKP algorithm is not satisfactory.

Zero-knowledge friendly hash functions play an important role to improve the perfor-
mance of proof generation time. These functions are directly defined on arithmetic

that every party performs a small part of the computation and passes it on to the next party.
Together with the current state of their computation, parties should include a proof that the
computation was performed correctly, not only in the last step, but in its entirety.

A simple example is depicted in Figure . The computation is split into , , in
sequence and distributed to 3 parties. IVC enables anyone to verify the final result and
the intermediate computations are correct, without compute the functions again. The
basic idea of IVC is as follows. The first party computes on the input and provides a
proof to convince the second party that the computation is correct. The second party
computes on and provides a proof which says “I have a valid proof that = ()”.
The third party acts similarly, and provides a proof says “I have a valid proof that =
()”. Therefore, one could verify the validity of to believe that all the computations
are correct.

IVC has plenty of applications, and it is very powerful to construct succinct blockchain
systems , . One could keep a very small proof on-chain, all the participants could verify
the validity of the proof to make sure all the historical transactions are valid. The research
of IVC is also very active in the academic community.

Proof-Carrying Data. PCD is a generalization of IVC, where the computation is repre-
sented with a DAG, not just in a path. The research is very active , , but the overall
performance is still not satisfactory for real applications.

2.4. Accumulators

An accumulator is a one-way membership hash function. It allows users to certify that
potential candidates are a member of a certain set with a short and easy-to-verify witness.
In some cases, it is also required to conceal the individual members of the set.

One trivial accumulator is Merkle tree, which accumulates all the transactions into the
root of the tree. A witness of the membership is the path of its siblings to the root. One
could easily recompute the root according to the path and compare the results. Vector
commitment does the same as Merkle trees by using a totally different way, it could heav-
ily rely on polynomial commitment. The recent pointproofs system is a new and efficient
candidate for vector commitment.

A verkle tree is essentially a combination of vector commitment and Merkle tree, which is
first proposed by John Kuszmaul . In a Merkle tree a parent is the hash result of its two
children. While in a verkle tree, a parent is the vector commitment of its multiple children.
Verkle trees are more space-efficient than Merkle trees, and the witness of membership
contains multiple opening proofs of vector commitments, which could be aggregated into
single one proof. Due to the efficiency in proof size, Ethereum 2.0 plans to build stateless
clients using verkle tree.

circuits, which naturally compatible with most ZKP algorithms. Poseidon and Rescue
are two of the candidates. However, it is worth pointing out that these hash functions are
newborn ones, which lack of sophisticated cryptographic analysis and test of time. We
keep a constant eye on the progress of these algorithms, and cautious approach to the
use of these algorithms is recommended.

Polynomial Commitment. A polynomial commitment scheme allows a committer to
commit a polynomial with a short string that can be used by a verifier to confirm claimed
evaluations of the committed polynomial. Polynomial commitment has a wide range of
applications. It is a core building block of ZK-SNARKs, vector commitment and verkle
tree et al. We recommend the efficient construction proposed in , which is also named
as the KZG polynomial commitment. The KZG polynomial commitment has constant size
(one single element), the overhead of opening one and multiple evaluations requires only
a constant amount of communication, which is desirable in most applications.

However, the advantages of KZG polynomial commitment come at a price. It needs a
trusted setup procedure, which is not acceptable in a decentralized network and applica-
tions. An ongoing activity named as Lumino is a MPC ceremony to generate all the
parameters in a distributed manner, and the resulting parameter is trustless as long as at
least one participant is honest.

2.2. ZK-SNARKs

ZK-SNARKs are core components of the algorithm level. Essentially, ZK-SNARKs are
noninteractive proof systems that could prove any NP problems in zero-knowledge. The
proof size and verification time are very small, but the proving time is relatively large.
These properties are very suitable for blockchain systems. Small proof size and verifica-
tion time are beneficial to broadcast and verify the proof on-chain, and the proving proce-
dure could be done off-chain.

Plonk and Marlin are preferable in our systems. Besides of the short proof and verifi-
cation time, these two systems have another attractive property. Both of them only
require a universal structured reference string to setup the system. This string plays a
vital role to enjoy short proof size and verification time, and could be generated in a

distributed way by running a very simple and efficient MPC protocol. Further, this string is
independent of the applications (not like Groth16), and could be updated at any time
by any participant. The very recent activity Lumino is an MPC ceremony to generate
this string for Plonk. We note that there exists ZK-SNARKs or other types of proof
systems that do not need trusted setup. However, the concrete performance of most
these algorithms seems not satisfactory for most complicated applications.

GKR-based algorithms are another type of ZK-SNARKs. Although the concrete proof
size and verification time are not as good as Plonk and Marlin, the proving time is attrac-
tive in other off-chain applications. Recent progresses show their huge potentials , , , .
This type of algorithm could even prove complicated statements such as deep learning
models, which is the-state-of-the-art ZK-SNARK scheme in this direction.

In order to reduce the bar of developing with ZK-SNARKs, gadgets libraries under differ-
ent algorithms are provided. In addition to facilitating development, these basic compo-
nents allow for targeted optimization of them.

2.3. Recursive ZKPs

Recursive ZKPs are proofs of proofs. They essentially prove that another zero-knowledge
proof is valid. These proof systems are very powerful in solving the scalability and storage
issues in blockchain. However, the performance of all existing schemes is not satisfactory.
We are very optimistic about the research in this area and have great confidence in the
subsequent performance improvement.

ZKP Composition. Zero-knowledge proofs are usually used to protect the anonymity and
confidentiality of transactions. However the introduction of ZKP will inherently reduce the
performance of blockchain, this is because the verification procedure will take tens of
milliseconds and is much larger than a single signature verification. Using ZKP composi-
tion, one could batch many (say 100) transactions protected by ZKP, and prove that “the
zero-knowledge proof of these 100 transactions are valid”, then the resulting proof actually
convince participants all the 100 transactions in a single verification. This again improves
the amount of transaction per second (TPS) of the blockchain system.

Incrementally-Verifiable Computation. IVC proposed by Valiant is a general case of
ZKP composition. IVC splits a long sequential computation between different parties such

1

Let Us Compute—PlatON / 07

www.platon.network

This level contains cryptographic algorithms to support upper level solutions. It have four
classes including primitives, ZK-SNARKs, recursive zero-knowledge proofs and accumu-
lators. Note that most of these algorithms are based on elliptic-curve cryptography, which
turns out to be nonquantum safe. Although we believe that the power of quantum computers
now poses no substantial threat to cryptography in a decade, we continue to maintain an
ongoing interest in post-quantum cryptography. The research of quantum-resilient alter-
natives is very active in the academic community, we will migrate to the post-quantum era
gradually when these algorithms are ready.

2.1. Primitives

Primitives are building blocks to construct advanced cryptographic algorithms and
solutions.

Elliptic Curves. Elliptic-curve cryptography enables smaller public key size and fast opera-
tions. Inheriting from Ethereum the Secp256k1 curve is supported natively. Faster
Curve25519 is also integrated to generate fast zero-knowledge proof, e.g., range proofs,
based on discrete log problems. Another type of curves are pairing-friendly ones, including
BN254 and BLS12-381. These two curves are widely used in ZK-SNARKs algorithm and
related pairing-based constructions such as BLS signature and verifiable function. Due to its
versatility, pairing-friendly curves will be unified with BLS12-381 in the near future.

Hash Functions. Standard hash function used in blockchain is SHA256. Although the
computation of SHA256 is extremely fast, it is not compatible with zero-knowledge proof
algorithms.This is because SHA256 consists of well-designed Boolean circuits, but almost
zero-knowledge proof algorithms are designed for arithmetic circuits. In theory, one could
transfer SHA256 circuit into arithmetic in a field, but the performance of proof generation of
the underlying ZKP algorithm is not satisfactory.

Zero-knowledge friendly hash functions play an important role to improve the perfor-
mance of proof generation time. These functions are directly defined on arithmetic

that every party performs a small part of the computation and passes it on to the next party.
Together with the current state of their computation, parties should include a proof that the
computation was performed correctly, not only in the last step, but in its entirety.

A simple example is depicted in Figure . The computation is split into , , in
sequence and distributed to 3 parties. IVC enables anyone to verify the final result and
the intermediate computations are correct, without compute the functions again. The
basic idea of IVC is as follows. The first party computes on the input and provides a
proof to convince the second party that the computation is correct. The second party
computes on and provides a proof which says “I have a valid proof that = ()”.
The third party acts similarly, and provides a proof says “I have a valid proof that =
()”. Therefore, one could verify the validity of to believe that all the computations
are correct.

IVC has plenty of applications, and it is very powerful to construct succinct blockchain
systems , . One could keep a very small proof on-chain, all the participants could verify
the validity of the proof to make sure all the historical transactions are valid. The research
of IVC is also very active in the academic community.

Proof-Carrying Data. PCD is a generalization of IVC, where the computation is repre-
sented with a DAG, not just in a path. The research is very active , , but the overall
performance is still not satisfactory for real applications.

2.4. Accumulators

An accumulator is a one-way membership hash function. It allows users to certify that
potential candidates are a member of a certain set with a short and easy-to-verify witness.
In some cases, it is also required to conceal the individual members of the set.

One trivial accumulator is Merkle tree, which accumulates all the transactions into the
root of the tree. A witness of the membership is the path of its siblings to the root. One
could easily recompute the root according to the path and compare the results. Vector
commitment does the same as Merkle trees by using a totally different way, it could heav-
ily rely on polynomial commitment. The recent pointproofs system is a new and efficient
candidate for vector commitment.

A verkle tree is essentially a combination of vector commitment and Merkle tree, which is
first proposed by John Kuszmaul . In a Merkle tree a parent is the hash result of its two
children. While in a verkle tree, a parent is the vector commitment of its multiple children.
Verkle trees are more space-efficient than Merkle trees, and the witness of membership
contains multiple opening proofs of vector commitments, which could be aggregated into
single one proof. Due to the efficiency in proof size, Ethereum 2.0 plans to build stateless
clients using verkle tree.

circuits, which naturally compatible with most ZKP algorithms. Poseidon and Rescue
are two of the candidates. However, it is worth pointing out that these hash functions are
newborn ones, which lack of sophisticated cryptographic analysis and test of time. We
keep a constant eye on the progress of these algorithms, and cautious approach to the
use of these algorithms is recommended.

Polynomial Commitment. A polynomial commitment scheme allows a committer to
commit a polynomial with a short string that can be used by a verifier to confirm claimed
evaluations of the committed polynomial. Polynomial commitment has a wide range of
applications. It is a core building block of ZK-SNARKs, vector commitment and verkle
tree et al. We recommend the efficient construction proposed in , which is also named
as the KZG polynomial commitment. The KZG polynomial commitment has constant size
(one single element), the overhead of opening one and multiple evaluations requires only
a constant amount of communication, which is desirable in most applications.

However, the advantages of KZG polynomial commitment come at a price. It needs a
trusted setup procedure, which is not acceptable in a decentralized network and applica-
tions. An ongoing activity named as Lumino is a MPC ceremony to generate all the
parameters in a distributed manner, and the resulting parameter is trustless as long as at
least one participant is honest.

2.2. ZK-SNARKs

ZK-SNARKs are core components of the algorithm level. Essentially, ZK-SNARKs are
noninteractive proof systems that could prove any NP problems in zero-knowledge. The
proof size and verification time are very small, but the proving time is relatively large.
These properties are very suitable for blockchain systems. Small proof size and verifica-
tion time are beneficial to broadcast and verify the proof on-chain, and the proving proce-
dure could be done off-chain.

Plonk and Marlin are preferable in our systems. Besides of the short proof and verifi-
cation time, these two systems have another attractive property. Both of them only
require a universal structured reference string to setup the system. This string plays a
vital role to enjoy short proof size and verification time, and could be generated in a

distributed way by running a very simple and efficient MPC protocol. Further, this string is
independent of the applications (not like Groth16), and could be updated at any time
by any participant. The very recent activity Lumino is an MPC ceremony to generate
this string for Plonk. We note that there exists ZK-SNARKs or other types of proof
systems that do not need trusted setup. However, the concrete performance of most
these algorithms seems not satisfactory for most complicated applications.

GKR-based algorithms are another type of ZK-SNARKs. Although the concrete proof
size and verification time are not as good as Plonk and Marlin, the proving time is attrac-
tive in other off-chain applications. Recent progresses show their huge potentials , , , .
This type of algorithm could even prove complicated statements such as deep learning
models, which is the-state-of-the-art ZK-SNARK scheme in this direction.

In order to reduce the bar of developing with ZK-SNARKs, gadgets libraries under differ-
ent algorithms are provided. In addition to facilitating development, these basic compo-
nents allow for targeted optimization of them.

2.3. Recursive ZKPs

Recursive ZKPs are proofs of proofs. They essentially prove that another zero-knowledge
proof is valid. These proof systems are very powerful in solving the scalability and storage
issues in blockchain. However, the performance of all existing schemes is not satisfactory.
We are very optimistic about the research in this area and have great confidence in the
subsequent performance improvement.

ZKP Composition. Zero-knowledge proofs are usually used to protect the anonymity and
confidentiality of transactions. However the introduction of ZKP will inherently reduce the
performance of blockchain, this is because the verification procedure will take tens of
milliseconds and is much larger than a single signature verification. Using ZKP composi-
tion, one could batch many (say 100) transactions protected by ZKP, and prove that “the
zero-knowledge proof of these 100 transactions are valid”, then the resulting proof actually
convince participants all the 100 transactions in a single verification. This again improves
the amount of transaction per second (TPS) of the blockchain system.

Incrementally-Verifiable Computation. IVC proposed by Valiant is a general case of
ZKP composition. IVC splits a long sequential computation between different parties such

[24]

[17] [12]

[22] [1]

[27]

Let Us Compute—PlatON / 08

www.platon.network

This level contains cryptographic algorithms to support upper level solutions. It have four
classes including primitives, ZK-SNARKs, recursive zero-knowledge proofs and accumu-
lators. Note that most of these algorithms are based on elliptic-curve cryptography, which
turns out to be nonquantum safe. Although we believe that the power of quantum computers
now poses no substantial threat to cryptography in a decade, we continue to maintain an
ongoing interest in post-quantum cryptography. The research of quantum-resilient alter-
natives is very active in the academic community, we will migrate to the post-quantum era
gradually when these algorithms are ready.

2.1. Primitives

Primitives are building blocks to construct advanced cryptographic algorithms and
solutions.

Elliptic Curves. Elliptic-curve cryptography enables smaller public key size and fast opera-
tions. Inheriting from Ethereum the Secp256k1 curve is supported natively. Faster
Curve25519 is also integrated to generate fast zero-knowledge proof, e.g., range proofs,
based on discrete log problems. Another type of curves are pairing-friendly ones, including
BN254 and BLS12-381. These two curves are widely used in ZK-SNARKs algorithm and
related pairing-based constructions such as BLS signature and verifiable function. Due to its
versatility, pairing-friendly curves will be unified with BLS12-381 in the near future.

Hash Functions. Standard hash function used in blockchain is SHA256. Although the
computation of SHA256 is extremely fast, it is not compatible with zero-knowledge proof
algorithms.This is because SHA256 consists of well-designed Boolean circuits, but almost
zero-knowledge proof algorithms are designed for arithmetic circuits. In theory, one could
transfer SHA256 circuit into arithmetic in a field, but the performance of proof generation of
the underlying ZKP algorithm is not satisfactory.

Zero-knowledge friendly hash functions play an important role to improve the perfor-
mance of proof generation time. These functions are directly defined on arithmetic

that every party performs a small part of the computation and passes it on to the next party.
Together with the current state of their computation, parties should include a proof that the
computation was performed correctly, not only in the last step, but in its entirety.

A simple example is depicted in Figure . The computation is split into , , in
sequence and distributed to 3 parties. IVC enables anyone to verify the final result and
the intermediate computations are correct, without compute the functions again. The
basic idea of IVC is as follows. The first party computes on the input and provides a
proof to convince the second party that the computation is correct. The second party
computes on and provides a proof which says “I have a valid proof that = ()”.
The third party acts similarly, and provides a proof says “I have a valid proof that =
()”. Therefore, one could verify the validity of to believe that all the computations
are correct.

IVC has plenty of applications, and it is very powerful to construct succinct blockchain
systems , . One could keep a very small proof on-chain, all the participants could verify
the validity of the proof to make sure all the historical transactions are valid. The research
of IVC is also very active in the academic community.

Proof-Carrying Data. PCD is a generalization of IVC, where the computation is repre-
sented with a DAG, not just in a path. The research is very active , , but the overall
performance is still not satisfactory for real applications.

2.4. Accumulators

An accumulator is a one-way membership hash function. It allows users to certify that
potential candidates are a member of a certain set with a short and easy-to-verify witness.
In some cases, it is also required to conceal the individual members of the set.

One trivial accumulator is Merkle tree, which accumulates all the transactions into the
root of the tree. A witness of the membership is the path of its siblings to the root. One
could easily recompute the root according to the path and compare the results. Vector
commitment does the same as Merkle trees by using a totally different way, it could heav-
ily rely on polynomial commitment. The recent pointproofs system is a new and efficient
candidate for vector commitment.

A verkle tree is essentially a combination of vector commitment and Merkle tree, which is
first proposed by John Kuszmaul . In a Merkle tree a parent is the hash result of its two
children. While in a verkle tree, a parent is the vector commitment of its multiple children.
Verkle trees are more space-efficient than Merkle trees, and the witness of membership
contains multiple opening proofs of vector commitments, which could be aggregated into
single one proof. Due to the efficiency in proof size, Ethereum 2.0 plans to build stateless
clients using verkle tree.

circuits, which naturally compatible with most ZKP algorithms. Poseidon and Rescue
are two of the candidates. However, it is worth pointing out that these hash functions are
newborn ones, which lack of sophisticated cryptographic analysis and test of time. We
keep a constant eye on the progress of these algorithms, and cautious approach to the
use of these algorithms is recommended.

Polynomial Commitment. A polynomial commitment scheme allows a committer to
commit a polynomial with a short string that can be used by a verifier to confirm claimed
evaluations of the committed polynomial. Polynomial commitment has a wide range of
applications. It is a core building block of ZK-SNARKs, vector commitment and verkle
tree et al. We recommend the efficient construction proposed in , which is also named
as the KZG polynomial commitment. The KZG polynomial commitment has constant size
(one single element), the overhead of opening one and multiple evaluations requires only
a constant amount of communication, which is desirable in most applications.

However, the advantages of KZG polynomial commitment come at a price. It needs a
trusted setup procedure, which is not acceptable in a decentralized network and applica-
tions. An ongoing activity named as Lumino is a MPC ceremony to generate all the
parameters in a distributed manner, and the resulting parameter is trustless as long as at
least one participant is honest.

2.2. ZK-SNARKs

ZK-SNARKs are core components of the algorithm level. Essentially, ZK-SNARKs are
noninteractive proof systems that could prove any NP problems in zero-knowledge. The
proof size and verification time are very small, but the proving time is relatively large.
These properties are very suitable for blockchain systems. Small proof size and verifica-
tion time are beneficial to broadcast and verify the proof on-chain, and the proving proce-
dure could be done off-chain.

Plonk and Marlin are preferable in our systems. Besides of the short proof and verifi-
cation time, these two systems have another attractive property. Both of them only
require a universal structured reference string to setup the system. This string plays a
vital role to enjoy short proof size and verification time, and could be generated in a

distributed way by running a very simple and efficient MPC protocol. Further, this string is
independent of the applications (not like Groth16), and could be updated at any time
by any participant. The very recent activity Lumino is an MPC ceremony to generate
this string for Plonk. We note that there exists ZK-SNARKs or other types of proof
systems that do not need trusted setup. However, the concrete performance of most
these algorithms seems not satisfactory for most complicated applications.

GKR-based algorithms are another type of ZK-SNARKs. Although the concrete proof
size and verification time are not as good as Plonk and Marlin, the proving time is attrac-
tive in other off-chain applications. Recent progresses show their huge potentials , , , .
This type of algorithm could even prove complicated statements such as deep learning
models, which is the-state-of-the-art ZK-SNARK scheme in this direction.

In order to reduce the bar of developing with ZK-SNARKs, gadgets libraries under differ-
ent algorithms are provided. In addition to facilitating development, these basic compo-
nents allow for targeted optimization of them.

2.3. Recursive ZKPs

Recursive ZKPs are proofs of proofs. They essentially prove that another zero-knowledge
proof is valid. These proof systems are very powerful in solving the scalability and storage
issues in blockchain. However, the performance of all existing schemes is not satisfactory.
We are very optimistic about the research in this area and have great confidence in the
subsequent performance improvement.

ZKP Composition. Zero-knowledge proofs are usually used to protect the anonymity and
confidentiality of transactions. However the introduction of ZKP will inherently reduce the
performance of blockchain, this is because the verification procedure will take tens of
milliseconds and is much larger than a single signature verification. Using ZKP composi-
tion, one could batch many (say 100) transactions protected by ZKP, and prove that “the
zero-knowledge proof of these 100 transactions are valid”, then the resulting proof actually
convince participants all the 100 transactions in a single verification. This again improves
the amount of transaction per second (TPS) of the blockchain system.

Incrementally-Verifiable Computation. IVC proposed by Valiant is a general case of
ZKP composition. IVC splits a long sequential computation between different parties such

[34]

[23]

[27]

[19]

[35] [38] [37] [32]

Let Us Compute—PlatON / 09

www.platon.network

This level contains cryptographic algorithms to support upper level solutions. It have four
classes including primitives, ZK-SNARKs, recursive zero-knowledge proofs and accumu-
lators. Note that most of these algorithms are based on elliptic-curve cryptography, which
turns out to be nonquantum safe. Although we believe that the power of quantum computers
now poses no substantial threat to cryptography in a decade, we continue to maintain an
ongoing interest in post-quantum cryptography. The research of quantum-resilient alter-
natives is very active in the academic community, we will migrate to the post-quantum era
gradually when these algorithms are ready.

2.1. Primitives

Primitives are building blocks to construct advanced cryptographic algorithms and
solutions.

Elliptic Curves. Elliptic-curve cryptography enables smaller public key size and fast opera-
tions. Inheriting from Ethereum the Secp256k1 curve is supported natively. Faster
Curve25519 is also integrated to generate fast zero-knowledge proof, e.g., range proofs,
based on discrete log problems. Another type of curves are pairing-friendly ones, including
BN254 and BLS12-381. These two curves are widely used in ZK-SNARKs algorithm and
related pairing-based constructions such as BLS signature and verifiable function. Due to its
versatility, pairing-friendly curves will be unified with BLS12-381 in the near future.

Hash Functions. Standard hash function used in blockchain is SHA256. Although the
computation of SHA256 is extremely fast, it is not compatible with zero-knowledge proof
algorithms.This is because SHA256 consists of well-designed Boolean circuits, but almost
zero-knowledge proof algorithms are designed for arithmetic circuits. In theory, one could
transfer SHA256 circuit into arithmetic in a field, but the performance of proof generation of
the underlying ZKP algorithm is not satisfactory.

Zero-knowledge friendly hash functions play an important role to improve the perfor-
mance of proof generation time. These functions are directly defined on arithmetic

that every party performs a small part of the computation and passes it on to the next party.
Together with the current state of their computation, parties should include a proof that the
computation was performed correctly, not only in the last step, but in its entirety.

A simple example is depicted in Figure . The computation is split into , , in
sequence and distributed to 3 parties. IVC enables anyone to verify the final result and
the intermediate computations are correct, without compute the functions again. The
basic idea of IVC is as follows. The first party computes on the input and provides a
proof to convince the second party that the computation is correct. The second party
computes on and provides a proof which says “I have a valid proof that = ()”.
The third party acts similarly, and provides a proof says “I have a valid proof that =
()”. Therefore, one could verify the validity of to believe that all the computations
are correct.

IVC has plenty of applications, and it is very powerful to construct succinct blockchain
systems , . One could keep a very small proof on-chain, all the participants could verify
the validity of the proof to make sure all the historical transactions are valid. The research
of IVC is also very active in the academic community.

Proof-Carrying Data. PCD is a generalization of IVC, where the computation is repre-
sented with a DAG, not just in a path. The research is very active , , but the overall
performance is still not satisfactory for real applications.

Figure 2: Example of Incrementally-Verifiable Computation.

2.4. Accumulators

An accumulator is a one-way membership hash function. It allows users to certify that
potential candidates are a member of a certain set with a short and easy-to-verify witness.
In some cases, it is also required to conceal the individual members of the set.

One trivial accumulator is Merkle tree, which accumulates all the transactions into the
root of the tree. A witness of the membership is the path of its siblings to the root. One
could easily recompute the root according to the path and compare the results. Vector
commitment does the same as Merkle trees by using a totally different way, it could heav-
ily rely on polynomial commitment. The recent pointproofs system is a new and efficient
candidate for vector commitment.

A verkle tree is essentially a combination of vector commitment and Merkle tree, which is
first proposed by John Kuszmaul . In a Merkle tree a parent is the hash result of its two
children. While in a verkle tree, a parent is the vector commitment of its multiple children.
Verkle trees are more space-efficient than Merkle trees, and the witness of membership
contains multiple opening proofs of vector commitments, which could be aggregated into
single one proof. Due to the efficiency in proof size, Ethereum 2.0 plans to build stateless
clients using verkle tree.

circuits, which naturally compatible with most ZKP algorithms. Poseidon and Rescue
are two of the candidates. However, it is worth pointing out that these hash functions are
newborn ones, which lack of sophisticated cryptographic analysis and test of time. We
keep a constant eye on the progress of these algorithms, and cautious approach to the
use of these algorithms is recommended.

Polynomial Commitment. A polynomial commitment scheme allows a committer to
commit a polynomial with a short string that can be used by a verifier to confirm claimed
evaluations of the committed polynomial. Polynomial commitment has a wide range of
applications. It is a core building block of ZK-SNARKs, vector commitment and verkle
tree et al. We recommend the efficient construction proposed in , which is also named
as the KZG polynomial commitment. The KZG polynomial commitment has constant size
(one single element), the overhead of opening one and multiple evaluations requires only
a constant amount of communication, which is desirable in most applications.

However, the advantages of KZG polynomial commitment come at a price. It needs a
trusted setup procedure, which is not acceptable in a decentralized network and applica-
tions. An ongoing activity named as Lumino is a MPC ceremony to generate all the
parameters in a distributed manner, and the resulting parameter is trustless as long as at
least one participant is honest.

2.2. ZK-SNARKs

ZK-SNARKs are core components of the algorithm level. Essentially, ZK-SNARKs are
noninteractive proof systems that could prove any NP problems in zero-knowledge. The
proof size and verification time are very small, but the proving time is relatively large.
These properties are very suitable for blockchain systems. Small proof size and verifica-
tion time are beneficial to broadcast and verify the proof on-chain, and the proving proce-
dure could be done off-chain.

Plonk and Marlin are preferable in our systems. Besides of the short proof and verifi-
cation time, these two systems have another attractive property. Both of them only
require a universal structured reference string to setup the system. This string plays a
vital role to enjoy short proof size and verification time, and could be generated in a

distributed way by running a very simple and efficient MPC protocol. Further, this string is
independent of the applications (not like Groth16), and could be updated at any time
by any participant. The very recent activity Lumino is an MPC ceremony to generate
this string for Plonk. We note that there exists ZK-SNARKs or other types of proof
systems that do not need trusted setup. However, the concrete performance of most
these algorithms seems not satisfactory for most complicated applications.

GKR-based algorithms are another type of ZK-SNARKs. Although the concrete proof
size and verification time are not as good as Plonk and Marlin, the proving time is attrac-
tive in other off-chain applications. Recent progresses show their huge potentials , , , .
This type of algorithm could even prove complicated statements such as deep learning
models, which is the-state-of-the-art ZK-SNARK scheme in this direction.

In order to reduce the bar of developing with ZK-SNARKs, gadgets libraries under differ-
ent algorithms are provided. In addition to facilitating development, these basic compo-
nents allow for targeted optimization of them.

2.3. Recursive ZKPs

Recursive ZKPs are proofs of proofs. They essentially prove that another zero-knowledge
proof is valid. These proof systems are very powerful in solving the scalability and storage
issues in blockchain. However, the performance of all existing schemes is not satisfactory.
We are very optimistic about the research in this area and have great confidence in the
subsequent performance improvement.

ZKP Composition. Zero-knowledge proofs are usually used to protect the anonymity and
confidentiality of transactions. However the introduction of ZKP will inherently reduce the
performance of blockchain, this is because the verification procedure will take tens of
milliseconds and is much larger than a single signature verification. Using ZKP composi-
tion, one could batch many (say 100) transactions protected by ZKP, and prove that “the
zero-knowledge proof of these 100 transactions are valid”, then the resulting proof actually
convince participants all the 100 transactions in a single verification. This again improves
the amount of transaction per second (TPS) of the blockchain system.

Incrementally-Verifiable Computation. IVC proposed by Valiant is a general case of
ZKP composition. IVC splits a long sequential computation between different parties such

[2]

[5] [6]

[25]

2

IVC prover IVC prover

Ver

IVC prover

Ver

F0 F1

F1 F0

F1

x1

F2

F0

x1

π2

πo π1 π2

x2

x1

x0

xo

()=F0x1 xo ()=F1x2 x1 ()=F2x3 x2
F0 F1 F2

Let Us Compute—PlatON / 10

www.platon.network

This level contains cryptographic algorithms to support upper level solutions. It have four
classes including primitives, ZK-SNARKs, recursive zero-knowledge proofs and accumu-
lators. Note that most of these algorithms are based on elliptic-curve cryptography, which
turns out to be nonquantum safe. Although we believe that the power of quantum computers
now poses no substantial threat to cryptography in a decade, we continue to maintain an
ongoing interest in post-quantum cryptography. The research of quantum-resilient alter-
natives is very active in the academic community, we will migrate to the post-quantum era
gradually when these algorithms are ready.

2.1. Primitives

Primitives are building blocks to construct advanced cryptographic algorithms and
solutions.

Elliptic Curves. Elliptic-curve cryptography enables smaller public key size and fast opera-
tions. Inheriting from Ethereum the Secp256k1 curve is supported natively. Faster
Curve25519 is also integrated to generate fast zero-knowledge proof, e.g., range proofs,
based on discrete log problems. Another type of curves are pairing-friendly ones, including
BN254 and BLS12-381. These two curves are widely used in ZK-SNARKs algorithm and
related pairing-based constructions such as BLS signature and verifiable function. Due to its
versatility, pairing-friendly curves will be unified with BLS12-381 in the near future.

Hash Functions. Standard hash function used in blockchain is SHA256. Although the
computation of SHA256 is extremely fast, it is not compatible with zero-knowledge proof
algorithms.This is because SHA256 consists of well-designed Boolean circuits, but almost
zero-knowledge proof algorithms are designed for arithmetic circuits. In theory, one could
transfer SHA256 circuit into arithmetic in a field, but the performance of proof generation of
the underlying ZKP algorithm is not satisfactory.

Zero-knowledge friendly hash functions play an important role to improve the perfor-
mance of proof generation time. These functions are directly defined on arithmetic

that every party performs a small part of the computation and passes it on to the next party.
Together with the current state of their computation, parties should include a proof that the
computation was performed correctly, not only in the last step, but in its entirety.

A simple example is depicted in Figure . The computation is split into , , in
sequence and distributed to 3 parties. IVC enables anyone to verify the final result and
the intermediate computations are correct, without compute the functions again. The
basic idea of IVC is as follows. The first party computes on the input and provides a
proof to convince the second party that the computation is correct. The second party
computes on and provides a proof which says “I have a valid proof that = ()”.
The third party acts similarly, and provides a proof says “I have a valid proof that =
()”. Therefore, one could verify the validity of to believe that all the computations
are correct.

IVC has plenty of applications, and it is very powerful to construct succinct blockchain
systems , . One could keep a very small proof on-chain, all the participants could verify
the validity of the proof to make sure all the historical transactions are valid. The research
of IVC is also very active in the academic community.

Proof-Carrying Data. PCD is a generalization of IVC, where the computation is repre-
sented with a DAG, not just in a path. The research is very active , , but the overall
performance is still not satisfactory for real applications.

2.4. Accumulators

An accumulator is a one-way membership hash function. It allows users to certify that
potential candidates are a member of a certain set with a short and easy-to-verify witness.
In some cases, it is also required to conceal the individual members of the set.

One trivial accumulator is Merkle tree, which accumulates all the transactions into the
root of the tree. A witness of the membership is the path of its siblings to the root. One
could easily recompute the root according to the path and compare the results. Vector
commitment does the same as Merkle trees by using a totally different way, it could heav-
ily rely on polynomial commitment. The recent pointproofs system is a new and efficient
candidate for vector commitment.

A verkle tree is essentially a combination of vector commitment and Merkle tree, which is
first proposed by John Kuszmaul . In a Merkle tree a parent is the hash result of its two
children. While in a verkle tree, a parent is the vector commitment of its multiple children.
Verkle trees are more space-efficient than Merkle trees, and the witness of membership
contains multiple opening proofs of vector commitments, which could be aggregated into
single one proof. Due to the efficiency in proof size, Ethereum 2.0 plans to build stateless
clients using verkle tree.

circuits, which naturally compatible with most ZKP algorithms. Poseidon and Rescue
are two of the candidates. However, it is worth pointing out that these hash functions are
newborn ones, which lack of sophisticated cryptographic analysis and test of time. We
keep a constant eye on the progress of these algorithms, and cautious approach to the
use of these algorithms is recommended.

Polynomial Commitment. A polynomial commitment scheme allows a committer to
commit a polynomial with a short string that can be used by a verifier to confirm claimed
evaluations of the committed polynomial. Polynomial commitment has a wide range of
applications. It is a core building block of ZK-SNARKs, vector commitment and verkle
tree et al. We recommend the efficient construction proposed in , which is also named
as the KZG polynomial commitment. The KZG polynomial commitment has constant size
(one single element), the overhead of opening one and multiple evaluations requires only
a constant amount of communication, which is desirable in most applications.

However, the advantages of KZG polynomial commitment come at a price. It needs a
trusted setup procedure, which is not acceptable in a decentralized network and applica-
tions. An ongoing activity named as Lumino is a MPC ceremony to generate all the
parameters in a distributed manner, and the resulting parameter is trustless as long as at
least one participant is honest.

2.2. ZK-SNARKs

ZK-SNARKs are core components of the algorithm level. Essentially, ZK-SNARKs are
noninteractive proof systems that could prove any NP problems in zero-knowledge. The
proof size and verification time are very small, but the proving time is relatively large.
These properties are very suitable for blockchain systems. Small proof size and verifica-
tion time are beneficial to broadcast and verify the proof on-chain, and the proving proce-
dure could be done off-chain.

Plonk and Marlin are preferable in our systems. Besides of the short proof and verifi-
cation time, these two systems have another attractive property. Both of them only
require a universal structured reference string to setup the system. This string plays a
vital role to enjoy short proof size and verification time, and could be generated in a

distributed way by running a very simple and efficient MPC protocol. Further, this string is
independent of the applications (not like Groth16), and could be updated at any time
by any participant. The very recent activity Lumino is an MPC ceremony to generate
this string for Plonk. We note that there exists ZK-SNARKs or other types of proof
systems that do not need trusted setup. However, the concrete performance of most
these algorithms seems not satisfactory for most complicated applications.

GKR-based algorithms are another type of ZK-SNARKs. Although the concrete proof
size and verification time are not as good as Plonk and Marlin, the proving time is attrac-
tive in other off-chain applications. Recent progresses show their huge potentials , , , .
This type of algorithm could even prove complicated statements such as deep learning
models, which is the-state-of-the-art ZK-SNARK scheme in this direction.

In order to reduce the bar of developing with ZK-SNARKs, gadgets libraries under differ-
ent algorithms are provided. In addition to facilitating development, these basic compo-
nents allow for targeted optimization of them.

2.3. Recursive ZKPs

Recursive ZKPs are proofs of proofs. They essentially prove that another zero-knowledge
proof is valid. These proof systems are very powerful in solving the scalability and storage
issues in blockchain. However, the performance of all existing schemes is not satisfactory.
We are very optimistic about the research in this area and have great confidence in the
subsequent performance improvement.

ZKP Composition. Zero-knowledge proofs are usually used to protect the anonymity and
confidentiality of transactions. However the introduction of ZKP will inherently reduce the
performance of blockchain, this is because the verification procedure will take tens of
milliseconds and is much larger than a single signature verification. Using ZKP composi-
tion, one could batch many (say 100) transactions protected by ZKP, and prove that “the
zero-knowledge proof of these 100 transactions are valid”, then the resulting proof actually
convince participants all the 100 transactions in a single verification. This again improves
the amount of transaction per second (TPS) of the blockchain system.

Incrementally-Verifiable Computation. IVC proposed by Valiant is a general case of
ZKP composition. IVC splits a long sequential computation between different parties such

[21]

[26]

[4]

www.platon.network

Let Us Compute—PlatON / 11

3 / On-Chain Capabilities

Privacy and storage are two important issues in blockchain. LatticeX Foundation focuses
on the following aspects.

3.1. Privacy

Payment transaction and smart contract are two basic components of blockchain. The
privacy requirements and underlying solutions are different.

3.1.1 Payment

It is worth pointing out that the main tokens in Alaya and PlatON are transparent, only the
privacy requirements of sub-tokens based on these two networks are considered. Devel-
opers could build their applications based on these basic capabilities.

Confidential Transaction is a widely used notion to hide the amount of a transaction. It
involves homomorphic encryptions/commitments to conceal the amount, and combines
with a range proof to ensure the validity of the transaction. The underlying solutions are
slightly different for account model and UTXO model. Since one could customize the
mode using smart contract, solutions for both models will be supported.

Anonymous Transaction hides the payer and payee address in the transaction.
Anonymity only makes sense when the number of address in the numbers is sufficiently
large. We note that in this type of transaction, the amount of the transfer is public. This is
useful to build private decentralized exchange based on automated market maker
(AMM). In order to provide anonymity, UTXO model is preferable. This is because in an
account model, update of the state will leak the address anyway. We encourage the com-
munity to propose efficient solutions for account model.

Private Transaction hides the address and amount simultaneously. Several methods
are proposed and a relatively complete solution is presented in ZCash based on
ZK-SNARK. Although the performance is still an urgent issue, it provides the best privacy

www.platon.network

Let Us Compute—PlatON / 12

in both aspects. Other solutions based on ring signatures are limited to small anonymity
set. We will focus on the solution based on ZK-SNARK, since we believe security and
privacy is the first priority.

3.1.2 Computation

Smart contract is designed to be Turing machine that could customize all computable
functions. It is a generalization of payment, and the difficulty to solve the privacy problems is
much higher.

ZK Compiler and ZKVM. Since there may be a variety of applications, it is hard to prede-
termine which circuit should be used. On the other hand, it is nearly impossible to require
all developers to understand the usage and cryptographic background of complicated
ZK-SNARK algorithms. This is the main reason to provide ZK compiler and ZKVM to
support privacy-preserving applications based on smart contract.

Developers use easy-to-use front-end programming languages to customize their appli-
cations,including specify the private inputs. The ZK compiler will automatically transfer
this application to suitable circuits or constraints. ZKVM will generate the parameters that
used for verification and will be deployed on the blockchain. Meanwhile, ZKVM will auto-
matically generate the zeroknowledge proof when users feed in the private input. This will
reduce the bar of use significantly, and several projects , , , , are dedicated to
this area.

Input and Output Privacy. In a simplified way, the execution of smart contract could be
abstracted as computing = (, ...,), where ’s are the inputs, is the output and
 is the application described in the smart contract. A straightforward requirement is to
protect the privacy of ’s and . If the inputs belong to a single party, one could use a
(fully) homomorphic encryption scheme to encrypt the inputs, and outsource the compu-
tation to a third node. Combining with verifiable computation algorithms, it will be easy to
verify the result. If the inputs belong to multiple parties, one should apply more powerful
multi-key homomorphic encryption schemes. Each party encrypts his input with his public
key, any third party evaluates the ciphertexts under different keys homomorphically and
provides a proof to ensure the correctness.

Function Privacy. The most ambitious goal of private computation is to hide the function
itself as well as the inputs and outputs. It will be much more difficult to design the solution.

[40] [13] [39] [7] [29]

x1 xny y

y

F

F

xi

xi

www.platon.network

One candidate framework is proposed in Zexe . It enables parties with access to a
blockchain and execute computations offline and subsequently post privacy-preserving,
publicly verifiable transactions that attest to the correctness of these off-chain executions.
We will integrate Zexe in the first step.

3.2. Storage

The append-only property of blockchain inherently keeps the data increasing as transac-
tions grow. At the time of writing this manuscript, Bitcoin and Ethereum store hundreds of
gigabyte amount of data, and the size is still increasing. It takes days on a typical laptop
for a full node to download and verify these historical transactions. Although the storage
issue is not urgent in PlatON and Alaya, we should prepare and research feasible
solutions.

Stateless Client. Full node contains all the historical transactions, the size of the data is
too large to be stored in lightweight clients, such as IoT terminals or cell phones. State-
less clients contain only the chain of headers without the execution of any transactions or
associated states. The size of the headers is much smaller than the transactions, almost
less than 5%. Given a transaction or a state, stateless clients will additionally require a
witness that proves the validity. Simple Payment Verification (SPV) provides such a
witness, which is essentially merkle tree branches, to convince clients without storing all
the transactions. The support of stateless clients in PlatON and Alaya will significantly
reduce the threshold to get involved in the network. Edge-side devices can also access
the network and conduct business transactions, which can greatly expand the network’s
reach.

Stateless Chain. A more ambitious goal is to upgrade PlatON and Alaya into stateless
chains. In a stateless blockchain, only succinct information (for instance, a constant-size
proof) is stored on-chain instead of state information. Mina is the first of this kind block-
chain to achieve statelessness. It involves in using recursive zero-knowledge proofs to
prove the validity of states and only keep constant-size data on-chain. In order to solve
the data availability issue, the states and transactions need a place to store anyway, we
introduce storage services in the next section. It is worth pointing out that upgrading to
stateless chain will significantly change the current layer-1 architecture of PlatON and
Alaya, thus we leave it as a long-time planning.

[3]

[2]

Let Us Compute—PlatON / 13

www.platon.network

Let Us Compute—PlatON / 14

4 / Off-Chain Services

As discussed in previous sections, it is inevitable to provide computation and storage
services to address the privacy and storage issues. The off-chain services are built upon
layer 2 in PlatON 2.0.

4.1. Computation Service

In the layer 2 of PlatON 2.0, institutes or nodes with enormous amount of computation
power could join the network to provide computation services as follows.

Private zk-Rollup. As described in Section , cryptographic tools are utilized to solve
privacy problems. Due to the heavy cost of cryptographic operations, the performance
will be reduced significantly. Zk-Rollup is widely discussed in the Ethereum community to
improve scalability. In a nutshell, an off-chain service provider (or node) packs a batch of
transactions, and provides a single proof to ensure the validity of all the transactions. The
on-chain verifier (probably a smart contract) verifies this single proof to validate all the
batch of transactions.

We will borrow this idea to improve the scalability of our systems after the privacy-pre-
serving properties are supported. The motivation here is slightly different from Ethereum.
The performance of original PlatON/Alaya is well enough for most applications (not
considering privacy), and the scalability issue is incurred by introducing private payments
and computations. So we call it private zk-Rollup.

Eth-PlatON Node. It is well known that the Ethereum community is one of the most
creative communities. The computation service in PlatON network also aims to combine
with Ethereum to solve the scalability issues. For instance, these node could provide
zk-Rollup services for Ethereum,and users could enjoy the benefit from PlatON (low
transaction fee) and Ethereum (rich applications). In more detail, users who have
deployed applications in Ethereum could pay a PlatON node with LAT to pack all the
Ethereum transactions. This node batches all the transactions and generates a proof for
the Ethereum network. Thus the users only need to pay a tiny amount of ETH fees and
LAT fees.

3.1

www.platon.network

Secure Outsourcing. The off-chain computation service also enables secure outsourc-
ing. PlatON will provide a decentralized outsourcing and fair-exchange market place.
Clients with low computation power could publish a computing job, where the computed
functions, fee and other related information are specified in a smart contract. In order to
protect the privacy of input data, the client encrypts all the input with a fully homomorphic
encryption scheme and sends the ciphertext to a computation node who picks up the job.
This node evaluates the computation in an encrypted form and provides a proof to
convince the smart contract that he did the job correctly. The smart contract verifies the
proof and sends the tokens to this node if the verification passes.

With a single node as the first step to build computation service in the layer 2 of PlatON,
it will finally form a computation marketplace for whom want to sell their computation
power in a decentralized manner. Besides providing internal services for PlatON and
Alaya, these off-chain services could also be extended for other systems and networks.

4.2. Storage Service

Although there are several methods to reduce the on-chain storage size, there has to be
a place to store all the transactions anyway. In the lay 2 of PlatON, anyone who has
sufficient disk space could provide storage services.

Data availability is the core problem we need to solve in storage services. Since historical
transactions are stored off-chain, one has to make sure that there existing at least one
node stores these data. New transactions initiated by users may change the state related
to historical transactions. For example, the system has to ensure you could spend the
tokens that received 10 years ago. Several ways may could be applied here, the first one
is proof of custody, which is considered in Ethereum 2.0 to solve data availability issues.
Although the situations are slightly different from Eth 2.0 and PlatON, we encourage deve-
opers to intensively study the solutions. Other possible ways are integrate proofs of
storage and proofs of replications algorithms into our systems. All those solutions are
heavily relied on cryptographic tools.

Storage services providers will finally work in a distributed manner. Access control of the data
will be a challenge in this situation, especially when sensitive data is stored in multiple provid-
ers. Proxy re-encryption (PRE) enables users to upload encrypted data into these providers,
and could share with other parties only under the owner’s permission.

Let Us Compute—PlatON / 15

www.platon.network

5 / Applications

In this section, we generally describe several applications based on privacy-preserving
capabilities.

5.1. Fair Exchange

Fair exchange enables a seller and a buyer to exchange data securely. Security means
that the buyer pays to the seller if and only if the buyer gets the digital goods. Theoretical
result shows that it is impossible to exchange fairly without a trusted third party. However,
it is possible to take the public blockchain system as a trusted third party to design fair
exchange protocols.

In general, an efficient protocol for fair exchange of digital goods uses smart contracts. A
fair exchange protocol allows a sender to sell a digital commodity for a fixed price to
a buyer. A typical solution of fair exchange is “Zero Knowledge Contingent Payment”
(ZKCP) , , , ZKCP technique enables fair exchange to be achieved by using block-
chain, where Bitcoins are released if and only if some knowledge is disclosed by the
payee. In particular, ZKCP uses zero knowledge proof algorithms together with a
hash-locked transaction to make sure the revealed data in the released hashlock is the
data that the payer need. Using the progress in ZK-SNARK , we could even exchange
a large amount of data which satisfies properties featured by deep learning models.

5.2. Anonymous DAO

Decentralized Autonomous Organization (DAO) is an organization that was designed to
be automated and decentralized. It acted as a form of venture capital fund, based on
open-source code and without a typical management structure or board of directors. To
be fully decentralized, the DAO was unaffiliated with any particular nation-state, though it
made use of the public blockchain network. Anonymous DAO aims to improve partici-
pants’ privacy by using cryptographic privacypreserving techniques like zk-snarks.

[33] [8] [16]

[32]

x p

Let Us Compute—PlatON / 16

www.platon.network

People can create a proposal by proving the validity of their membership within the
group. Also DAO needs to prevent spam proposals by requiring any proposal to be
uniquely created in an epoch. People can make votes to any proposal by proving their
memberships without disclosing their identities, and proving the freshness of their votes.
Technically speaking, one could use ZK-SNARKs to prove the following and achieve the
above requirements: a) Membership of a Merkle tree. b) The correctness of a nullifier,
where a nullifier is an unforgettable identifier of an item (a vote, a membership, etc).

5.3. Private Decentralized Exchange

A private DEX is a decentralized exchange that protects the identity and the amount of

the traders. Current DEXs mostly focus on automated market maker (AMM) modes. An

automated liquidity protocol powered by a constant product formula and implemented in

a system of non-upgradeable smart contracts on the blockchain. It obviates the need for

trusted intermediaries, prioritizing decentralization, censorship resistance, and security.

Anyone can become a liquidity provider (LP) for a pool by depositing an equivalent value
of each underlying token in return for pool tokens. These tokens track pro-rata LP shares
of the total reserves, and can be redeemed for the underlying assets at any time. Pairs
act as automated market makers, standing ready to accept one token for the other as
long as the “constant product” formula is preserved. This formula, most simply expressed
as = , states that trades must not change the product () of a pair’s reserve balanc-
es (and). Because k remains unchanged from the reference frame of a trade, it is
often referred to as the invariant.

Private payment could be used to construct private DEXs. Anonymity could be held by
applying anonymous transaction based on ZK-SNARKs. However, in the AMM model, it
is difficult to protect the transfer amount. This is because the changed values and
have to satisfy the constraint () () = , and these two values should be
public for all the participants. It is still an open problem to provide anonymity and confi-
dentiality for DEXs.

kk

k

x

x

x

y

y

y

x∆
x∆

y∆
y∆− +

Let Us Compute—PlatON / 17

www.platon.network

5.4. Sealed Bidding

Sealed Bidding provides a privacy-preserving manner for the auction where no bidder
learns any information about the other bids. The bidders are encouraged to bid according
to their monetary valuation of the asset. On the other hand, the existence of any collusion
between the auctioneer and a malicious bidder can break the advantage. To prevent the
conflict between protecting the privacy of the bids and trusting the auctioneer to individu-
ally determine the winner, cryptographic protocols can be utilized to accomplish the
publicly verifiable correctness without sacrificing the privacy of the bids.

A typical cryptographic sealed-bid could involve the auctioneer, different bidders and the
auction smart contract to interact with each other, where they use primitives like homo-
morphic commitment schemes, zero knowledge proofs for interval memberships, etc.
The auctioneer initially deploys the auction contract on the blockchain, with some param-
eters to be configured, including amount of initial deposit of bidders, time intervals, maximum
number of bidders, etc. During the bidding process, each bidder submits a commitment
of his bid to the auction contract, and also encryption of the bid witness and randomness
to the auctioneer. The auctioneer orders the bids according to the correctness to determine
the winning bid, the associated account address and commitment,and proves the
correctness of the winner simultaneously .

5.5. Private NFT

Private non-fungible Tokens (NFT) enable verifiable representation of unique items and
events, such that ownership and transactions are private by default. Private NFT can be
specialized with different ZK-SNARK circuits based on different scenarios. For instance,
an invoice which dictates that Bob will pay Alice $1000 in 90 days, can be minted as an
NFT that represents a claim on the future revenue. The owner of the invoice Alice can
transfer this NFT to Cindy by making on-chain trading of this asset.

A simple NFT registry based on a smart contract that lets anyone mint an NFT by provid-
ing a ZK-SNARK proof that validates the NFT completely off-chain. With that, we can
achieve that the private information in the off-chain document stays private, but all NFTs
have verifiable attributes.

Let Us Compute—PlatON / 18

www.platon.network

5.6. ZK-Game

ZK-Game is essentially a type of “game with incomplete information”, where players do
not possess full information about their opponents and the environments. Some players
possess private information, a fact that the others should take into account when forming
expectations about how those players will behave. For instance, Poker is a typical game
with incomplete information, where a player never knows the cards in his opponents.
Game with incomplete information allows people to explore a richer and more dramatic
strategy. Information asymmetry enables deceive, conditional coordinate, and complex
social dynamics.

Using ZKP tools like ZK-SNARKs in building games with incomplete information is quite
crucial. For instance, ZK-SNARKs makes it possible to build and verify claims like “I
moved my horse from a secret location A to a secret location B. I will not tell you any infor-
mation of location A and location B, but this proof proves that the movement from A to B
is indeed valid”.

Dark Forest is built on ZKP as a game with incomplete information in Ethereum. One of
the core ideas behind Dark Forest is the “cryptographic fog of war” protected by
ZK-SNARKs. We encourage developers to create interesting games as Dark Forest in
our systems.

Let Us Compute—PlatON / 19

States or other related conditions should be checked as well.2

www.platon.network

6 / Distributed Key Management Services

Blockchain provides the underlying core technology of decentralized networks. In all
these blockchain systems, decentralization essentially means that each individual could
control his own asset by means of controlling the private key (or signing key) of digital
signatures. A transaction (transfer of assets) is valid as long as the underlying signature
passes the verification . However, controllingthe private keys individually may incur many
problems in practice.

Usability. Private/signing key differs from password. In most of our daily applications,
people get used to keeping in mind the passwords with specific meanings. However,
private keys are random strings with 32 bytes length. It is barely possible to remember all
these meaningless strings when participants initiate transactions. Several methods are
proposed to manage private keys, but all of them have some drawbacks.

Mnemonic words. Mnemonic words are generated from standard algorithm, which takes
a private key as input. These words have specific meaning and could be converted back
to a private key. Although it is easy to remember one single word, there are always more
than 10 words to represent one private key. Therefore, Mnemonic words are commonly
used as backups of private keys and stored in physical materials. For instance, write
them down in a paper, and put it into a safe deposit box.

Keystore. In most decentralized wallets, passwords are used to protect private keys.Private
keys are encrypted using symmetric ciphers (e.g., AES) by taking the password as a
secret key. The resulting ciphertext forms the keystore file, which is stored locally in the
device. Keystore file significant simplifies the usage of private keys, in which the usage is
essentially the same as centralized Apps. However, when users change devices, they
have to import the keystore files, this will increase the complexity when changing devices.

Hardware Wallet. Users who have higher security requirements may prefer to use hardware
wallet. The private keys are generated and used in a safe and trusted area in the hardware
wallet. Private keys will never leave this area in the whole life circle. The underlying security
is essentially provided by the hardware, which controls the access of private keys. Thus,
users have to carry a customized device or card to deal with their asset, and these devices
are commonly suitable for laptops, not for mobile phones.

2

Let Us Compute—PlatON / 20

www.platon.network

Security. The one who has the private key could totally control the asset, the security of
private keys directly affect the security of the asset. Most events such as exchange secu-
rity incident and asset loss are caused by mishaps of private key management. Loss of
mnemonic words, keystore files and hardware wallets happens frequently, and the lack
of retrieval mechanism prevents users finding the private key back. Once users lose
private keys, loss them forever.

Although many approaches are proposed to protect private keys, we should pay more
attention to one crucial attack surface. That is, the private key appears in the memory in
plain when using it to sign a transaction. Despite of a very short time slot, the attackers
could easily steal the whole private key and then all the assets without sophisticated
precautions.

Lack of Approval Procedure. In the traditional financial management procedure, the
approval of large fund transfers is very complicated, and each enterprise may have
specific polices. For example, the transfers should be approved by the finance specialist,
CFO and CEO sequentially, before they are initiated. However, these polices could not
apply to blockchain directly. This is because the private-key owner could ignore all the
polices, and initiate transfers as he wants.

One commonly used method to solve the above problem is multi-signature. Roughly
speaking, this approach relies on smart contract (or script in Bitcoin). The smart contract
states that “this transaction is valid as long as three collected signatures are valid”, and
execution of the transfer will exactly follow the constraints as stated. Theoretically, smart
contract could specify arbitrary polices for different purpose, but it still has some draw-
backs.

Smart contracts will be run by every node in a repetition execution way. Thus the policies
stated in smart contract are publicly known to all participants. This is not desirable for
enterprise customers, since the policy may leak sensitive information from the company.

Another serious issue is that the policy is also public to hackers, who may have interests
in attacking the company. Contract security has been one of the important problems
plaguing the entire blockchain community.

For custody providers, they always need to maintain hundreds of blockchain assets and
tokens. These heterogeneous blockchain may design different smart contract systems

Let Us Compute—PlatON / 21

www.platon.network

or even do not support smart contract. The cost of developing policy-related smart
contract will be extremely high for these custody providers. The developers has to learn
different programming languages, complete and sophisticated security test of these
resulting contracts should be taken into account.

It is worth pointing out that the requirement for key management is much urgent for enter-
prise users. Individual users may prefer to use centralized wallets for high-frequency
trading, and actually do not possess the private key.

In order to solve the above problems, we aim to utilize cryptographic protocol to provide
distributed key management systems. More specifically, the underlying multi-party com-
putation (MPC) protocol is threshold signatures. Utilization these tools and protocols are
arising in the blockchian community, but still lack of commercial use and standard.

6.1. Threshold Signature

Threshold cryptography enables a set of parties to carry out cryptographic operations,
without any single party holding the secret information. Threshold signature is a subfield
of threshold cryptography, which focuses on distributed signing. In cryptography community,
one may design new signature schemes that are suitable to convert into the threshold
version. But this is not desirable in blockchian community, because specific and standard
signature schemes, such as ECDSA/EdDSA/BLS, are already adopted. It is extremely
difficult to replace them with new ones. Therefore, this direction aims to design efficient
MPC protocols for existing signature schemes.

In general, threshold signature comprises the following two main components.

Distributed Key Generation. In a traditional key generation procedure, one chooses a
uniformly random private key , and generates a public key locally. In a distributed key
generation procedure, n participants choose uniformly random shares , ..., locally, and
run a MPC protocol to generate the public key without collecting all these shares together.
The resulting private key is = + · · · + and does not appear in the procedure.

Distributed Signing. A signing algorithm takes as input the message and the private key,

x

x1

x x1 xn

xn

Let Us Compute—PlatON / 22

www.platon.network

and outputs a digital signature. In a distributed version, each participant holds xi and runs
a MPC protocol to compute the signing process without collecting , ..., together. The
resulting signature is essentially the same as the local version.

Plenty of threshold signature schemes have been proposed , , , , , , , ,
 . LatticeX Foundation encourages cryptography experts to implement these protocols
and make them open-source.

6.2. Framework and Architecture

Framework. The aim of distributed key management services based on threshold signa-
ture is to provide a unified framework to guarantee security, usability and flexibility. The
basic framework is illustrated as follows in Figure .

The core component is a distributed KMS server, which could be deployed in different
environments. Although only two servers are depicted in Figure , one could easily
extend them to multiple servers. The servers interact with each other to run threshold
signature protocols, and provide standard APIs for developers to customize their
business logic, including the policies.

Two levels of policies are considered in this framework. The private keys are shared
between severs according to some policies which we called Level-1 policies. The server
himself could reshare the previous shares into subshares according to other polices,
which we call Level-2 policies. These subshares are always distributed to individual
users, which is essentially generated by the (,)-Shamir Secret Sharing scheme.

The basic workflow is stated as follows.

[30]

[36]

[14] [9] [18] [31] [15] [10] [11]

3

3

Figure 3: Framework of Distributed Key Management Services.

Subshare

MPC protocol

Server 1 Server 2

x11

Subshare x12

Subshare x13

Internal Business Logic

1

Distributed-KMS Server
(secret key share x)

External Business Logic

Distributed-KMS Server
(secret key share x) 2

x1

n t

xn

Let Us Compute—PlatON / 23

www.platon.network

When a group of participants require to create a jointly managed account, the two servers
call the distributed key generation procedure and obtain and , respectively. Server 1
reshares according to Level-2 policies (), gets , , and
sends them to the individual users respectively. Server 1 will delete all the shares at the end
of this procedure.

A Large fund transfer could be initiated by the system or one participant in the group. If all
the participants (or other conditions satisfy the Level-2 policy) approve the transfer, they will
send the subshares to Server 1. Server 1 confirms the approval, collects the subshares,
reconstructs the share and runs the threshold signature protocol with Server 2 to
complete the transfer.

This framework has many advantages covering security, usability and flexibility, which are
described as follows.

Security. Inheriting from threshold signature, the private key never appears in the life cycle.
The shares (of Server 2) could be managed by traditional KMS (see Figure). For individual
users, the subshare could be stored in mobile phone. It will not affect the security of the
whole system even they lost the subshares. Additionally, traditional authentication method,
such as two-factor authentication, could be applied to enhance the security. One could even
refresh the subshares in a fixed period of time or manually.

Usability. One important advantage of this framework is that the end-side users do not need
to approve the transfer on-line simultaneously. They simply send the subshares independently
and the interactive protocol is actually handled among the servers.

Flexibility. The users could set customized Level-1 or Level-2 policies according to their
business logic. It is also very flexible to design retrieval mechanisms by combine policy
levels. For instance, one could set Level-1 policy be (2, 2) and Level-2 policy be (3, 1), then
the retrieval service is provided by Server 1. Or one could set a (3, 1) Level-1 policy, then
the retrieval procedure is provided by all the three servers.

Architecture. The core component of the framework is the DKMS server. The architecture
of the server is depicted in Figure .

4

4

x1

x1

x1

x2

x11 x12 x13e g 3 3 policyout of. ., - - -

Let Us Compute—PlatON / 24

www.platon.network

At the heart of the server are various threshold signature protocols that supporting
commonly used digital signature schemes, including ECDSA, EdDSA, BLS and Schnorr.
Note that the difficulty is to design efficient threshold signature protocols for ECDSA and
EdDSA. Other MPC protocols to support hierarchical deterministic wallet and share refresh-
ing are also very useful in practice.

In the early version, a middleware called Key Module is designed to connect MPC protocols
and Tink , which is an industrial-grade framework developed by Google. In this version,
the mature tink framework is used to help manage the shares. A long-term version will
integrate these protocols into tink.

Tink is a multi-language, cross-platform, open source library that provides cryptographic
APIs that are secure, easy to use correctly, and hard to misuse. It reduces common cryptog-
raphy pitfalls with user-centered design, careful implementation and code reviews, and
extensive testing. At Google, Tink is one of the standard cryptography libraries, and has
been deployed in hundreds of products and systems. Tink was born out of our extensive

Figure 4: The Architecture of DKMS Server.

MPC-ECDSA MPC-EdDSA MPC-BLS

MPC-Schnorr MPC-HDW MPC-Refresh

MPC Algorithms

Key Module

Share Storage Share Backup Share Delete

Share Refresh Share Resharing SubShare Reconstruct

TinK

External

[20]

Google Cloud KMS AWS KMS HSM

Let Us Compute—PlatON / 25

www.platon.network

experience working with Google’s product teams, fixing weaknesses in implementations,
and providing simple APIs that can be used safely without needing a cryptography back-
ground.

Tink also supports external key management service, such as Amazon KMS, Googl Cloud
KMS, Android Keystore, and iOS Keychain. For commercial usage, these standard and
widely accepted KMS systems are preferred to manage shares.

Let Us Compute—PlatON / 26

www.platon.network

7 / Roadmap

The preliminary roadmap is given in Figure 5.

2021 Q2

Support basic ZK-SNARKs algorithms, including Plonk.

Support basic primitives, such as zk-friendly hashes et al.

2021 Q3

Support private payments, including confidential transaction, anonymous transaction and

private transaction.

Publish open-source distributed key management services.

2021 Q4

Publish private DEX API, protect the anonymity of transactions.

Release fair exchange protocols.

Figure 5: The Roadmap.

2021.04

2021.08 2022.04

2021.12 2022.08 2023.04

PlatON

2022.12

AI

2023.08

Private Computation
ZK-Game API

ZK-SNARK Algorithms Computation Service NetworkPrivate DEX API
Fair exchange protocol

Private Payments
Distributed KMS

FPGA accelerate ZK-SNARK
Sealed Bidding API

ZK-Compiler and ZKVM
ETH-PlatON node
Anonymous voting API

Storage Service
Network

Let Us Compute—PlatON / 27

www.platon.network

2022 Q2

Release ZK-Compiler and ZKVM wicha are adapted to Plonk.

Build ETH-PlatON node that connect Ethereum and PlatON.

Release Anonymous voting APIs.

2022 Q3

Publish private computation framework based Plonk.

Release ZK-Game APIs.

2022 Q4

Release FPGA accelerate source code for Plonk.

Release sealed bidding APIs.

2023 Q2

Release computation service network.

2023 Q3

Release storage service network.

Let Us Compute—PlatON / 28

www.platon.network

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of symmetric-key primitives for

advanced cryptographic protocols. In: FSE (2020)

Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: Decentralized cryptocurrency at scale.

Cryptology ePrint Archive, Report 2020/352 (2020), https://eprint.iacr.org/2020/352

Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: Zexe: Enabling decentralized

private computation. In: IEEE Symposium on Security and Privacy (2020)

Buterin, V.: Verkle trees (2021), https://vitalik.ca/general/2021/06/18/verkle.html

B¨unz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without succinct

arguments. In: Advances in Cryptology - CRYPTO (2020)

B¨unz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from accumulation schemes.

In: TCC (2020)

Cairo-Lang: https://github.com/starkware-libs/cairo-lang

Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge contingent pay�ments revisited:

Attacks and payments for services. In: ACM CCS (2017)

Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party ECDSA from hash proof

systems and efficient instantiations. In: Advances in Cryptology - CRYPTO (2019)

Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Bandwidth-efficient threshold EC-DSA.

In: Public-Key Cryptography - PKC (2020)

Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Bandwidth-efficient threshold EC-DSA

revisited: Online/offline extensions, identifiable aborts, proactivity and adaptive security. eprint/2021/291

(2021)

Let Us Compute—PlatON / 29

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

www.platon.network

Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Preprocessing zksnarks with universal

and updatable srs. In: Advances in Cryptology - EUROCRYPT (2020)

Circom: https://github.com/iden3/circom

Doerner, J., Kondi, Y., Lee, E., abhi shelat: Secure two-party threshold ECDSA from ECDSA assumptions.

In: IEEE Symposium on Security and Privacy (2018)

Doerner, J., Kondi, Y., Lee, E., abhi shelat: Threshold ECDSA from ECDSA assumptions: The multiparty

case. In: IEEE Symposium on Security and Privacy (2019)

Fuchsbauer, G.: Wi is not enough: Zero-knowledge contingent (service) payments revisited.

In: ACM CCS (2019)

Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-bases for oecumenical

noninteractive arguments of knowledge. Cryptology ePrint Archive, Report2019/953 (2019),

https://eprint.iacr.org/2019/953

Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless setup. In: ACM CCS (2018)

Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In:

STOC (2008)

Google: Tink. https://github.com/google/tink

Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: Aggregating proofs for multiple vector commit-

ments. In: ACM CCS (2020)

Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon: A new hash function for

zero-knowledge proof systems. In: Usenix Security (2021)

Let Us Compute—PlatON / 30

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

www.platon.network

Groth, J.: On the size of pairing-based non-interactive arguments. In: Advances in Cryptology

- EUROCRYPT (2016)

Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications.

In: Advances in Cryptology - ASIACRYPT (2010)

KKattis, A., Bonneau, J.: Proof of necessary work: Succinct state verification with fairness guarantees.

Cryptology ePrint Archive, Report 2020/190 (2020), https://eprint.iacr.org/2020/190

Kuszmaul, J.: Verkle trees (2018), https://math.mit.edu/research/highschool/primes/

materials/2018/Kuszmaul.pdf

LatticeX Foundation: Lumino: Light up the Evolving Road. https://lumino.latticex.foundation/home (2021)

LatticeX Foundation: PlatON 2.0: Decentralized Privacy-Preserving AI Network (2021)

Leo: https://github.com/AleoHQ/leo

Lindell, Y.: Fast secure two-party ECDSA signing. In: Advances in Cryptology - CRYPTO (2017)

Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key generation and applications

to cryptocurrency custody. In: ACM CCS (2018)

 Liu, T., Xie, X., Zhang, Y.: zkcnn: Zero knowledge proofs for convolutional neural net�work predictions and

accuracy. Cryptology ePrint Archive, Report 2021/673 (2021), https://eprint.iacr.org/2021/673

Maxwell, G.: Zero knowledge contingent payment (2015),

https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment

Let Us Compute—PlatON / 31

[34]

[35]

[36]

[37]

[38]

[39]

[40]

www.platon.network

Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In: TCC

(2008)

Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-knowledge proofs with

optimal prover computation. In: Advances in Cryptology - CRYPTO (2019)

Yuen, T.H., Cui, H., Xie, X.: Compact zero-knowledge proofs for threshold ECDSA with trustless setup. In:

Public-Key Cryptography - PKC (2021)

Zhang, J., Liu, T., Wang, W., Zhang, Y., Song, D., Xie, X., Zhang, Y.: Doubly efficient interactive proofs for

general arithmetic circuits with linear prover time. Cryptology ePrint Archive, Report 2020/1247 (2020),

https://eprint.iacr.org/2020/1247

Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications

to zero knowledge proof. In: IEEE Symposium on Security and Privacy (2020)

Zinc: https://github.com/matter-labs/zinc

 ZoKrates: https://github.com/Zokrates/ZoKrates

Let Us Compute—PlatON / 32

